Каталог расширений

Популярные теги

3gp       avi       fb2       jpg       mp3       pdf      

Как найти длительность звучания файла


Как быстро узнать длительность многих медиафайлов

Очень часто многие пользователи задаются вопросом: «А сколько по времени у меня занимает папка Музыка» или «Какой продолжительностью эти файлы», или «Какая общая продолжительность звучания моих клипов». Если папка «Музыка» содержит только аудиофайлы, то подсчитать общую длительность их звучания не составляет труда. Для этого достаточно воспользоваться любым аудиоплеером (Winamp, AIMP и другие). А если папка «Клипы» содержит только видео, то это также легко сделать в любом видеоплеере, поддерживающем плейлисты. Но что делать, если «Музыка» содержит еще и клипы, то есть видеофайлы или, наоборот, папка «Клипы» содержит аудиофайлы? Или, например, некоторые типы музыкальных файлов не воспроизводятся обычными плеерами?


Вот тут-то на помощь и приходит LossPlay. Если у вас есть много мелких файлов, причем неважно, аудио это файлы или видео, или сборник из аудио и видеофайлов, то подсчитать общую продолжительность звучания или воспроизведения всех этих файлов не составляет особого труда.

Узнаем длительность с помощью плеера

Для этого просто перетаскиваем нужные файлы или сразу целиком папку, а может быть, даже несколько папок и файлов в окно плеера и ждем, когда он закончит подсчет.

Скорость этого процесса напрямую зависит от производительности компьютера, а также наличия «разношерстных» файлов. Так, например, подсчет длительности видеофайлов в плеере осуществляется заметно медленнее, чем аналогичное действие со звуковыми файлами. Тем не менее, в конце вы обязательно увидите общую продолжительность всего списка воспроизведения.

Кстати, при необходимости этот список можно скопировать в Excel таблицу. Для этого нужно всего лишь вызвать контекстное меню плейлиста в плеере и выбрать пункт «Скопировать список файлов» — «Со временем для таблицы».

При этом, если в настройках плеера стоит убрана галочка «Округлять секунды при копировании списка в таблицу»,

то вставляться в эту самую таблицу время будет в обычном формате. Выглядит это примерно так:

Здесь, в таблице, у меня собственный формат для удобства в ведении статистики при расшифровке (транскрибации) файлов. Первая колонка — это название трека, вторая сейчас пустая и заполняется количеством знаков, третья — это временной интервал расшифровываемого файла. Ну а четвертая колонка и есть то самое время длительности каждого файла по-отдельности.

Знатокам Excel не составит большого труда написать нужную формулу для подсчета общей длительности всех перечисленных в таблице файлов. Если это нужно, конечно. А если общая длительность в самой таблице не нужна, то ее по-прежнему можно наблюдать в окне плеера.

Звук. Информационный объем звукового файла

Основные понятия

Частота дискретизации(f) определяет количество отсчетов, запоминаемых за 1 секунду;

1 Гц (один герц) – это один отсчет в секунду,

а 8 кГц – это 8000 отсчетов в секунду

Глубина кодирования (b) – это количество бит, которое необходимо для кодирования 1 уровня громкости

Время звучания (t)


Объем памяти для хранения данных 1 канала (моно)

I=f·b·t

(для хранения информации о звуке длительностью  t секунд, закодированном с частотой дискретизации f Гц и глубиной кодирования b бит требуется I бит памяти)

При двухканальной записи (стерео)  объем памяти, необходимый для хранения данных одного канала, умножается на 2 

I=f·b·t·2
 

Единицы измерения I - биты, b -биты, f - Герцы,  t – секунды Частота дискретизации 44,1 кГц, 22,05 кГц, 11,025 кГц

Кодирование звуковой информации


Основные теоретические положения

Временная дискретизация звука. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука.

Таким образом, непрерывная зависимость громкости звука от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность "ступенек".

Частота дискретизации. Для записи аналогового звука и его преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т.е. частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее "лесенка" цифрового звукового сигнала повторяет кривую аналогового сигнала.

Частота дискретизации звука - это количество измерений громкости звука за одну секунду, измеряется в герцах (Гц). Обозначим частоту дискретизации буквой f.

Частота дискретизации звука может лежать в диапазоне от 8000 до 48 000 измерений громкости звука за одну секунду. Для кодировки выбирают одну из трех частот: 44,1 КГц, 22,05 КГц, 11,025 КГц.

Глубина кодирования звука. Каждой "ступеньке" присваивается определенное значение уровня громкости звука. Уровни громкости звука можно рассматривать как набор возможных состояний N, для кодирования которых необходимо определенное количество информации b, которое называется глубиной кодирования звука

Глубина кодирования звука - это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.

Если известна глубина кодирования, то количество уровней громкости цифрового звука можно рассчитать по формуле N = 2b. Пусть глубина кодирования звука составляет 16 битов, тогда количество уровней громкости звука равно:

N = 2b = 216 = 65 536.

В процессе кодирования каждому уровню громкости звука присваивается свой 16-битовый двоичный код, наименьшему уровню звука будет соответствовать код 0000000000000000, а наибольшему - 1111111111111111.

Качество оцифрованного звука. Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим "моно"). Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим "стерео").

Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла.

Задачи для самостоятельной подготовки.

1. Рассчитайте  объём  монофонического  аудиофайла  длительностью  10 с  при  16-битном  кодировании  и  частоте  дискретизации 44,1 к Гц.  (861  Кбайт)

2. Производится двухканальная (стерео) звукозапись с частотой дискретизации 48 кГц и 24-битным разрешением. Запись длится 1 минуту, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

 1)0,3   2) 4   3) 16   4) 132

3. Производится одноканальная (моно) звукозапись с частотой дискретизации 11 кГц и глубиной кодирования 24 бита. Запись длится 7 минут, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

 1) 11     2) 13    3)  15              4)  22

4. Производится двухканальная (стерео) звукозапись с частотой дискретизации 11 кГц и глубиной кодирования 16 бит. Запись длится 6 минут, ее результаты записываются в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

1) 11                2) 12           3)  13         4)  15

5. При  16-битном  кодировании,  частоте  дискретизации  32 кГц  и  объёме моноаудиофайла 700 Кбайт время  звучания  равно:

                          1) 20 с             2) 10 с             3) 1,5 мин                  4) 1,5 с

6. Одна минута записи цифрового аудиофайла занимает на диске 1,3 Мб, разрядность звуковой платы - 8. С какой частотой дискретизации записан звук?

7. Аналоговый звуковой сигнал  был  дискретизирован  сначала  с  использованием  256 уровней  интенсивности  сигнала  (качество  звучания  радиотрансляции),  а  затем  65 536 уровней (качество звучания аудио-CD).  Во  сколько  раз  различаются  информационные  объёмы  оцифрованного  звука?

                          1) 16                2) 24               3) 4                 4) 2

Литература.

  1. http://wiki.iteach.ru/images/f/fe/Лазарева_примеры_реш_задач.pdf
  2. http://kpolyakov.narod.ru/school/ege.htm
  3. http://fipi.ru/view/sections/217/docs/514.html
  4. Диагностические и тренировочные работы МИОО 2011-2012 http://www.alleng.ru/d/comp/com_ege-tr.htm
  5. http://festival.1september.ru/articles/103548/
  6. http://www.5byte.ru/9/0009.php
  7. Информатика. Задачник-практикум в 2 т. /Под ред. И.Г. Семакина, Е.К. Хеннера: Том 1. – Лаборатория Базовых Знаний, 2008 г. – 304 с.: ил. 
  8. Практикум по информатике и информационным технологиям. Учебное пособие для общеобразовательных учреждений / Н.Д. Угринович, Л.Л. Босова, Н.И. Михайлова. – М.: Бином. Лаборатория Знаний, 2002. 400 с.: ил.

Решение задач по информатике на тему "Кодирование звуковой информации"

Решение задач на кодирование звуковой информации

Данное электронное пособие содержит группу задач по теме «Кодирование звуковой информации». Сборник задач разбит на типы задач исходя из указанной темы. Каждый тип задач рассматривается с учетом дифференцированного подхода, т. е. рассматриваются задачи минимального уровня (оценка «3»), общего уровня (оценка «4»), продвинутого уровня (оценка «5»). Приведенные задачи взяты из различных учебников (список прилагается). Подробно рассмотрены решения всех задач, даны методические рекомендации для каждого типа задач, приведен краткий теоретический материал. Для удобства пользования пособие содержит ссылки на закладки.

При решении задач учащиеся опираются на следующие понятия:

Временная дискретизация – процесс, при котором, во время кодирования непрерывного звукового сигнала, звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Чем больше амплитуда сигнала, тем громче звук.

Глубина звука (глубина кодирования) - количество бит на кодировку звука.

Уровни громкости (уровни сигнала) - звук может иметь различные уровни громкости. Количество различных уровней громкости рассчитываем по формуле N= 2I где I – глубина звука.

Частота дискретизации количество измерений уровня входного сигнала в единицу времени (за 1 сек). Чем больше частота дискретизации, тем точнее процедура двоичного кодирования. Частота измеряется в герцах (Гц). 1 измерение за 1 секунду -1 ГЦ.

1000 измерений за 1 секунду 1 кГц. Обозначим частоту дискретизации буквой D. Для кодировки выбирают одну из трех частот: 44,1 КГц, 22,05 КГц, 11,025 КГц.

Считается, что диапазон частот, которые слышит человек, составляет от 20 Гц до 20 кГц.

Качество двоичного кодирования – величина, которая определяется глубиной кодирования и частотой дискретизации.

Аудиоадаптер (звуковая плата) – устройство, преобразующее электрические колебания звуковой частоты в числовой двоичный код при вводе звука и обратно (из числового кода в электрические колебания) при воспроизведении звука.

Характеристики аудиоадаптера: частота дискретизации и разрядность регистра.).

Разрядность регистра -число бит в регистре аудиоадаптера. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического тока в число и обратно. Если разрядность равна I, то при измерении входного сигнала может быть получено 2I =N различных значений.

Размер цифрового моноаудиофайла ( A) измеряется по формуле:

A=D*T*I/8, где Dчастота дискретизации (Гц), T – время звучания или записи звука, I разрядность регистра (разрешение). По этой формуле размер измеряется в байтах.

Размер цифрового стереоаудиофайла ( A) измеряется по формуле:

A=2*D*T*I/8, сигнал записан для двух колонок, так как раздельно кодируются левый и правый каналы звучания.

Учащимся полезно выдать таблицу 1, показывающую, сколько Мб будет занимать закодированная одна минута звуковой информации при разной частоте дискретизации:

1. Размер цифрового файла

1. Определить размер (в байтах) цифрового аудиофайла, время звучания которого составляет 10 секунд при частоте дискретизации 22,05 кГц и разрешении 8 бит. Файл сжатию не подвержен. ([1], стр. 156, пример 1)

Формула для расчета размера (в байтах) цифрового аудио-файла: A=D*T*I/8.

Для перевода в байты полученную величину надо разделить на 8 бит.

A=D*T*I/8 = 22050 х 10 х 8 / 8 = 220500 байт.

Ответ: размер файла 220500 байт.

2. Определить объем памяти для хранения цифрового аудиофайла, время звучания которого составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 бит. ([1], стр. 157, №88)

A=D*T*I/8. – объем памяти для хранения цифрового аудиофайла.

44100 (Гц) х 120 (с) х 16 (бит) /8 (бит) = 10584000 байт= 10335,9375 Кбайт= 10,094 Мбайт.

3. В распоряжении пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой аудиофайл с длительностью звучания 1 минута. Какой должна быть частота дискретизации и разрядность? ([1], стр. 157, №89)

Формула для расчета частоты дискретизации и разрядности: D* I =А/Т

(объем памяти в байтах) : (время звучания в секундах):

Разрядность адаптера может быть 8 или 16 бит. (1 байт или 2 байта). Поэтому частота дискретизации может быть либо 45438,3 Гц = 45,4 кГц ≈ 44,1 кГц –стандартная характерная частота дискретизации, либо 22719,15 Гц = 22,7 кГц ≈ 22,05 кГц - стандартная характерная частота дискретизации

4. Объем свободной памяти на диске — 5,25 Мб, разрядность звуковой платы — 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 22,05 кГц? ([1], стр. 157, №90)

Решение:

Формула для расчета длительности звучания: T=A/D/I

(объем памяти в байтах) : (частота дискретизации в Гц) : (разрядность звуковой платы в байтах):

5,25 Мбайт = 5505024 байт

5505024 байт: 22050 Гц : 2 байта = 124,8 сек
Ответ: 124,8 секунды

5. Одна минута записи цифрового аудиофайла занимает на диске 1,3 Мб, разрядность звуковой платы — 8. С какой частотой дискретизации записан звук? ([1], стр. 157, №91)

Решение:

Формула для расчета частоты дискретизации : D =А/Т/I

(объем памяти в байтах) : (время записи в секундах) : (разрядность звуковой платы в байтах)

1,3 Мбайт = 1363148,8 байт

1363148,8 байт : 60 : 1 = 22719,1 Гц

Ответ: 22,05 кГц

6. Две минуты записи цифрового аудиофайла занимают на диске 5,1 Мб. Частота дискретизации — 22050 Гц. Какова разрядность аудиоадаптера? ([1], стр. 157, №94)

Решение:

Формула для расчета разрядности: (объем памяти в байтах) : (время звучания в секундах): (частота дискретизации):

5, 1 Мбайт= 5347737,6 байт

5347737,6 байт: 120 сек : 22050 Гц= 2,02 байт =16 бит

Ответ: 16 бит

7. Объем свободной памяти на диске — 0,01 Гб, разрядность звуковой платы — 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 44100 Гц? ([1], стр. 157, №95)

Решение:

Формула для расчета длительности звучания T=A/D/I

(объем памяти в байтах) : (частота дискретизации в Гц) : (разрядность звуковой платы в байтах)

0,01 Гб = 10737418,24 байт

10737418,24 байт : 44100 : 2 = 121,74 сек =2,03 мин
Ответ: 20,3 минуты

8. Оцените информационный объем моноаудиофайла длительностью звучания 1 мин. если "глубина" кодирования и частота дискретизации звукового сигнала равны соответственно:
а) 16 бит и 8 кГц;
б) 16 бит и 24 кГц.

([2], стр. 76, №2.82)

Решение:

а).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 8 000 = 128000 бит = 16000 байт = 15,625 Кбайт/с
2) Информационный объем звукового файла длительностью 1 минута равен:
15,625 Кбайт/с х 60 с = 937,5 Кбайт

б).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 24 000 = 384000 бит = 48000 байт = 46,875 Кбайт/с
2) Информационный объем звукового файла длительностью 1 минута равен:
46,875 Кбайт/с х 60 с =2812,5 Кбайт = 2,8 Мбайт

Ответ: а) 937,5 Кбайт; б) 2,8 Мбайт

Уровень «5»

Используется таблица 1

9. Какой объем памяти требуется для хранения цифрового аудиофайла с записью звука высокого качества при условии, что время звучания составляет 3 минуты? ([1], стр. 157, №92)

Решение:

Высокое качество звучания достигается при частоте дискретизации 44,1КГц и разрядности аудиоадаптера, равной 16.
Формула для расчета объема памяти: (время записи в секундах) x (разрядность звуковой платы в байтах) x (частота дискретизации):
180 с х 2 х 44100 Гц = 15876000 байт = 15,1 Мб
Ответ: 15,1 Мб

10. Цифровой аудиофайл содержит запись звука низкого качества (звук мрачный и приглушенный). Какова длительность звучания файла, если его объем составляет 650 Кб? ([1], стр. 157, №93)

Решение:

Для мрачного и приглушенного звука характерны следующие параметры: частота дискретизации — 11, 025 КГц, разрядности аудиоадаптера — 8 бит (см. таблицу 1). Тогда T=A/D/I. Переведем объем в байты: 650 Кб = 665600 байт

Т=665600 байт/11025 Гц/1 байт ≈60.4 с

Ответ: длительность звучания равна 60,5 с

11. Оцените информационный объем высокачественного стереоаудиофайла длительностью звучания 1 минута, если "глубина" кодирования 16 бит, а частота дискретизации 48 кГц. ([2], стр. 74, пример 2.54)

Решение:

Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 48 000 х 2 = 1 536 000 бит = 187,5 Кбайт (умножили на 2, так как стерео).

Информационный объем звукового файла длительностью 1 минута равен:
187,5 Кбайт/с х 60 с ≈ 11 Мбайт

Ответ: 11 Мб

Ответ: а) 940 Кбайт; б) 2,8 Мбайт.

12. Рассчитайте время звучания моноаудиофайла, если при 16-битном кодировании и частоте дискретизации 32 кГц его объем равен:
а) 700 Кбайт;
б) 6300 Кбайт

([2], стр. 76, №2.84)

Решение:

а).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 32 000 = 512000 бит = 64000 байт = 62,5 Кбайт/с
2) Время звучания моноаудиофайла объемом 700 Кбайт равно:
700 Кбайт : 62,5 Кбайт/с = 11,2 с

б).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 32 000 = 512000 бит = 64000 байт = 62,5 Кбайт/с
2) Время звучания моноаудиофайла объемом 700 Кбайт равно:
6300 Кбайт : 62,5 Кбайт/с = 100,8 с = 1,68 мин

Ответ: а) 10 сек; б) 1,5 мин.

13. Вычислить, сколько байт информации занимает на компакт-диске одна секунда стереозаписи (частота 44032 Гц, 16 бит на значение). Сколько занимает одна минута? Какова максимальная емкость диска (считая максимальную длительность равной 80 минутам)? ([4], стр. 34, упражнение №34)

Решение:

Формула для расчета объема памяти A=D*T*I:
(время записи в секундах) * (разрядность звуковой платы в байтах) * (частота дискретизации). 16 бит -2 байта.
1) 1с х 2 х 44032 Гц = 88064 байт (1 секунда стереозаписи на компакт-диске)
2) 60с х 2 х 44032 Гц = 5283840 байт (1 минута стереозаписи на компакт-диске)
3) 4800с х 2 х 44032 Гц = 422707200 байт=412800 Кбайт=403,125 Мбайт (80 минут)

Ответ: 88064 байт (1 секунда), 5283840 байт (1 минута), 403,125 Мбайт (80 минут)

2. Определение качества звука.

Для определения качества звука надо найти частоту дискретизации и воспользоваться таблицей №1

256 (28) уровней интенсивности сигнала -качество звучания радиотрансляции, использованием 65536 (216) уровней интенсивности сигнала - качество звучания аудио-CD. Самая качественная частота соответствует музыке, записанной на компакт-диске. Величина аналогового сигнала измеряется в этом случае 44 100 раз в секунду.

Уровень «5»

13. Определите качество звука (качество радиотрансляции, среднее качество, качество аудио-CD) если известно, что объем моноаудиофайла длительностью звучания в 10 сек. равен:
а) 940 Кбайт;
б) 157 Кбайт.

([2], стр. 76, №2.83)

Решение:

а).
1) 940 Кбайт= 962560 байт = 7700480 бит
2) 7700480 бит : 10 сек = 770048 бит/с
3) 770048 бит/с : 16 бит = 48128 Гц –частота дискретизации – близка к самой высокой 44,1 КГц
Ответ: качество аудио-CD

б).
1) 157 Кбайт= 160768 байт = 1286144 бит
2) 1286144 бит : 10 сек = 128614,4 бит/с
3) 128614,4 бит/с : 16 бит = 8038,4 Гц
Ответ: качество радиотрансляции

Ответ: а) качество CD; б) качество радиотрансляции.

14. Определите длительность звукового файла, который уместится на гибкой дискете 3,5”. Учтите, что для хранения данных на такой дискете выделяется 2847 секторов объемом 512 байт.
а) при низком качестве звука: моно, 8 бит, 8 кГц;
б) при высоком качестве звука: стерео, 16 бит, 48 кГц.

([2], стр. 77, №2.85)

Решение:

а).
1) Информационный объем дискеты равен:
2847 секторов х 512 байт = 1457664 байт = 1423,5 Кбайт
2) Информационный объем звукового файла длительностью в 1 секунду равен:
8 бит х 8 000 = 64 000 бит = 8000 байт = 7,8 Кбайт/с
3) Время звучания моноаудиофайла объемом 1423,5 Кбайт равно:
1423,5 Кбайт : 7,8 Кбайт/с = 182,5 с ≈ 3 мин

б).
1) Информационный объем дискеты равен:
2847 секторов х 512 байт = 1457664 байт = 1423,5 Кбайт
2) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 48 000 х 2= 1 536 000 бит = 192 000 байт = 187,5 Кбайт/с
3) Время звучания стереоаудиофайла объемом 1423,5 Кбайт равно:
1423,5 Кбайт : 187,5 Кбайт/с = 7,6 с

Ответ: а) 3 минуты; б) 7,6 секунды.

3. Двоичное кодирование звука.

При решении задач пользуется следующим теоретическим материалом:

Для того, чтобы кодировать звук, аналоговый сигнал, изображенный на рисунке,



плоскость разбивается на вертикальные и горизонтальные линии. Вертикальное разбиение –это дискретизация аналогового сигнала (частота измерения сигнала), горизонтальное разбиение - квантование по уровню. Т.е. чем мельче сетка – тем качественнее приближен аналоговый звук с помощью цифр. Восьмибитное квантование применяется для оцифровки обычной речи (телефонного разговора) и радиопередач на коротких волнах. Шестнадцатибитное – для оцифровки музыки и УКВ (ультро-коротко-волновые) радиопередач.

Уровень «3»

15. Аналоговый звуковой сигнал был дискретизирован сначала с использованием 256 уровней интенсивности сигнала (качество звучания радиотрансляции), а затем с использованием 65536 уровней интенсивности сигнала (качество звучания аудио-CD). Во сколько раз различаются информационные объемы оцифрованного звука? ([2], стр. 77, №2.86)

Решение:

Длина кода аналогового сигнала с использованием 256 уровней интенсивности сигнала равна 8 битам, с использованием 65536 уровней интенсивности сигнала равна 16 битам. Так как длина кода одного сигнала увеличилась вдвое, то информационные объемы оцифрованного звука различаются в 2 раза.

Ответ: в 2 раза.

Уровень «4»

16. Согласно теореме Найквиста—Котельникова, для того чтобы аналоговый сигнал можно было точно восстановить по его дискретному представлению (по его отсчетам), частота дискретизации должна быть как минимум вдвое больше максимальной звуковой частоты этого сигнала.

  • Какова должна быть частота дискретизации звука, воспринимаемого человеком?

  • Что должно быть больше: частота дискретизации речи или частота дискретизации звучания симфонического оркестра?

Цель: познакомить учащихся с характеристиками аппаратных и программных средств работы со звуком. Виды деятельности: привлечение знаний из курса физики (или работа со справочниками). ([3], стр. ??, задача 2)

Решение:

Считается, что диапазон частот, которые слышит человек, составляет от 20 Гц до 20 кГц. Таким образом, по теореме Найквиста—Котельникова, для того чтобы аналоговый сигнал можно было точно восстановить по его дискретному представлению (по его отсчетам), частота дискретизации должна быть как минимум вдвое больше максимальной звуковой частоты этого сигнала. Максимальная звуковая частота которую слышит человек -20 КГц, значит, аппаратура и программные средства должны обеспечивать частоту дискретизации не менее 40 кГц, а точнее 44,1 КГц. Компьютерная обработка звучания симфонического оркестра предполагает более высокую частоту дискретизации, чем обработка речи, поскольку диапазон частот в случае симфонического оркестра значительно больше.

Ответ: не меньше 40 кГц, частота дискретизации симфонического оркестра больше.

Уровень»5»

17. На рисунке изображено зафиксированное самописцем звучание 1 секунды речи. Закодируйте его в двоичном цифровом коде с частотой 10 Гц и длиной кода 3 бита. ([3], стр. ??, задача 1)

Решение:

Кодирование с частотой 10 Гц означает, что мы должны измерить высоту звука 10 раз за секунду. Выберем равноотстоящие моменты времени:

Длина кода в 3 бита означает 23 = 8 уровней квантования. То есть в качестве числового кода высоты звука в каждый выбранный момент времени мы можем задать одну из следующих комбинаций: 000, 001, 010, 011, 100, 101, 110, 111. Их всего 8, следовательно, высоту звука можно измерять на 8 «уровнях»:

«Округлять» значения высоты звука будем до ближайшего нижнего уровня:

Используя данный способ кодирования, мы получим следующий результат (пробелы поставлены для удобства восприятия): 100 100 000 011 111 010 011 100 010 110.

Примечание. Целесообразно обратить внимание учащихся на то, насколько неточно код передает изменение амплитуды. То есть частота дискретизации 10 Гц и уровень квантования 23 (3 бита) слишком малы. Обычно для звука (голоса) выбирают частоту дискретизации 8 кГц, т. е. 8000 раз в секунду, и уровень квантования 28 (код длиной 8 бит).

Ответ: 100 100 000 011 111 010 011 100 010 110.

18. Объясните, почему уровень квантования относится, наряду с частотой дискретизации, к основным характеристикам представления звука в компьютере. Цели: закрепить понимание учащимися понятий «точность представления данных», «погрешность измерения», «погрешность представления»; повторить с учащимися двоичное кодирование и длину кода. Вид деятельности: работа с определениями понятий. ([3], стр. ??, задача 3)

Решение:

В геометрии, физике, технике есть понятие «точность измерения», тесно связанное с понятием «погрешность измерения». Но есть еще и понятие «точность представления». Например, про рост человека можно сказать, что он: а) около. 2 м, б) чуть больше 1,7 м, в) равен 1 м 72 см, г) равен 1 м 71 см 8 мм. То есть для обозначения измеренного роста можно использовать 1, 2, 3 или 4 цифры.
Так же и для двоичного кодирования. Если для записи высоты звука в конкретный момент времени использовать только 2 бита, то, даже если измерения были точны, передать можно только 4 уровня: низкий (00), ниже среднего (01), выше среднего (10), высокий (11). Если использовать 1 байт, то можно передать 256 уровней. Чем выше уровень квантования, или, что то же самое, чем больше битов отводится для записи измеренного значения, тем точнее передается это значение.

Примечание. Следует отметить, что измерительный инструмент тоже должен поддерживать выбранный уровень квантования (длину, измеренную линейкой с дециметровыми делениями, нет смысла представлять с точностью до миллиметра).

Ответ: чем выше уровень квантования тем точнее передается звук.

Литература:

[1] Информатика. Задачник-практикум в 2 т. /Под ред. И.Г. Семакина, Е.К. Хеннера: Том 1. – Лаборатория Базовых Знаний, 1999 г. – 304 с.: ил.

[2] Практикум по информатике и информационным технологиям. Учебное пособие для общеобразовательных учреждений / Н.Д. Угринович, Л.Л. Босова, Н.И. Михайлова. – М.: Бином. Лаборатория Знаний, 2002. 400 с.: ил.

[3] Информатика в школе: Приложение к журналу «Информатика и образование». №4 — 2003. — М.: Образование и Информатика, 2003. — 96 с.: ил.

[4] Кушниренко А.Г., Леонов А.Г., Эпиктетов М.Г. и др. Информационная культура: одирование информации. Информационные модели. 9-10 класс: Учебник для общеобразовательных учебных заведений. — 2-е изд. — М.: Дрофа, 1996. — 208 с.: ил.

[5] Гейн А.Г., Сенокосов А.И. Справочник по информатике для школьников. — Екатеринбург: «У-Фактория», 2003. — 346. с54-56.

Урок "Решение задач на кодирование звуковой информации"

Решение задач на кодирование звуковой информации

При решении задач учащиеся опираются на следующие понятия:

Временная дискретизация – процесс, при котором, во время кодирования непрерывного звукового сигнала, звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Чем больше амплитуда сигнала, тем громче звук.

Глубина звука (глубина кодирования) - количество бит на кодировку звука.

Уровни громкости (уровни сигнала) - звук может иметь различные уровни громкости. Количество различных уровней громкости рассчитываем по формуле N= 2I где I – глубина звука.

Частота дискретизации количество измерений уровня входного сигнала в единицу времени (за 1 сек). Чем больше частота дискретизации, тем точнее процедура двоичного кодирования. Частота измеряется в герцах (Гц). 1 измерение за 1 секунду -1 ГЦ.

1000 измерений за 1 секунду 1 кГц. Обозначим частоту дискретизации буквой D. Для кодировки выбирают одну из трех частот: 44,1 КГц, 22,05 КГц, 11,025 КГц.

Считается, что диапазон частот, которые слышит человек, составляет от 20 Гц до 20 кГц.

Качество двоичного кодирования – величина, которая определяется глубиной кодирования и частотой дискретизации.

Аудиоадаптер (звуковая плата) – устройство, преобразующее электрические колебания звуковой частоты в числовой двоичный код при вводе звука и обратно (из числового кода в электрические колебания) при воспроизведении звука.

Характеристики аудиоадаптера: частота дискретизации и разрядность регистра.).

Разрядность регистра -число бит в регистре аудиоадаптера. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического тока в число и обратно. Если разрядность равна I, то при измерении входного сигнала может быть получено 2I =N различных значений.

Размер цифрового моноаудиофайла ( A) измеряется по формуле:

A=D*T*I/8, где Dчастота дискретизации (Гц), T – время звучания или записи звука, I разрядность регистра (разрешение). По этой формуле размер измеряется в байтах.

Размер цифрового стереоаудиофайла ( A) измеряется по формуле:

A=2*D*T*I/8, сигнал записан для двух колонок, так как раздельно кодируются левый и правый каналы звучания.

Учащимся полезно выдать таблицу 1, показывающую, сколько Мб будет занимать закодированная одна минута звуковой информации при разной частоте дискретизации:

1. Размер цифрового файла

1. Определить размер (в байтах) цифрового аудиофайла, время звучания которого составляет 10 секунд при частоте дискретизации 22,05 кГц и разрешении 8 бит. Файл сжатию не подвержен. ([1], стр. 156, пример 1)

Формула для расчета размера (в байтах) цифрового аудио-файла: A=D*T*I/8.

Для перевода в байты полученную величину надо разделить на 8 бит.

A=D*T*I/8 = 22050 х 10 х 8 / 8 = 220500 байт.

Ответ: размер файла 220500 байт.

2. Определить объем памяти для хранения цифрового аудиофайла, время звучания которого составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 бит. ([1], стр. 157, №88)

A=D*T*I/8. – объем памяти для хранения цифрового аудиофайла.

44100 (Гц) х 120 (с) х 16 (бит) /8 (бит) = 10584000 байт= 10335,9375 Кбайт= 10,094 Мбайт.

3. В распоряжении пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой аудиофайл с длительностью звучания 1 минута. Какой должна быть частота дискретизации и разрядность? ([1], стр. 157, №89)

Формула для расчета частоты дискретизации и разрядности: D* I =А/Т

(объем памяти в байтах) : (время звучания в секундах):

Разрядность адаптера может быть 8 или 16 бит. (1 байт или 2 байта). Поэтому частота дискретизации может быть либо 45438,3 Гц = 45,4 кГц ≈ 44,1 кГц –стандартная характерная частота дискретизации, либо 22719,15 Гц = 22,7 кГц ≈ 22,05 кГц - стандартная характерная частота дискретизации

4. Объем свободной памяти на диске — 5,25 Мб, разрядность звуковой платы — 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 22,05 кГц? ([1], стр. 157, №90)

Решение:

Формула для расчета длительности звучания: T=A/D/I

(объем памяти в байтах) : (частота дискретизации в Гц) : (разрядность звуковой платы в байтах):

5,25 Мбайт = 5505024 байт

5505024 байт: 22050 Гц : 2 байта = 124,8 сек
Ответ: 124,8 секунды

5. Одна минута записи цифрового аудиофайла занимает на диске 1,3 Мб, разрядность звуковой платы — 8. С какой частотой дискретизации записан звук? ([1], стр. 157, №91)

Решение:

Формула для расчета частоты дискретизации : D =А/Т/I

(объем памяти в байтах) : (время записи в секундах) : (разрядность звуковой платы в байтах)

1,3 Мбайт = 1363148,8 байт

1363148,8 байт : 60 : 1 = 22719,1 Гц

Ответ: 22,05 кГц

6. Две минуты записи цифрового аудиофайла занимают на диске 5,1 Мб. Частота дискретизации — 22050 Гц. Какова разрядность аудиоадаптера? ([1], стр. 157, №94)

Решение:

Формула для расчета разрядности: (объем памяти в байтах) : (время звучания в секундах): (частота дискретизации):

5, 1 Мбайт= 5347737,6 байт

5347737,6 байт: 120 сек : 22050 Гц= 2,02 байт =16 бит

Ответ: 16 бит

7. Объем свободной памяти на диске — 0,01 Гб, разрядность звуковой платы — 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 44100 Гц? ([1], стр. 157, №95)

Решение:

Формула для расчета длительности звучания T=A/D/I

(объем памяти в байтах) : (частота дискретизации в Гц) : (разрядность звуковой платы в байтах)

0,01 Гб = 10737418,24 байт

10737418,24 байт : 44100 : 2 = 121,74 сек =2,03 мин
Ответ: 20,3 минуты

8. Оцените информационный объем моноаудиофайла длительностью звучания 1 мин. если "глубина" кодирования и частота дискретизации звукового сигнала равны соответственно:
а) 16 бит и 8 кГц;
б) 16 бит и 24 кГц.

([2], стр. 76, №2.82)

Решение:

а).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 8 000 = 128000 бит = 16000 байт = 15,625 Кбайт/с
2) Информационный объем звукового файла длительностью 1 минута равен:
15,625 Кбайт/с х 60 с = 937,5 Кбайт

б).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 24 000 = 384000 бит = 48000 байт = 46,875 Кбайт/с
2) Информационный объем звукового файла длительностью 1 минута равен:
46,875 Кбайт/с х 60 с =2812,5 Кбайт = 2,8 Мбайт

Ответ: а) 937,5 Кбайт; б) 2,8 Мбайт

Уровень «5»

Используется таблица 1

9. Какой объем памяти требуется для хранения цифрового аудиофайла с записью звука высокого качества при условии, что время звучания составляет 3 минуты? ([1], стр. 157, №92)

Решение:

Высокое качество звучания достигается при частоте дискретизации 44,1КГц и разрядности аудиоадаптера, равной 16.
Формула для расчета объема памяти: (время записи в секундах) x (разрядность звуковой платы в байтах) x (частота дискретизации):
180 с х 2 х 44100 Гц = 15876000 байт = 15,1 Мб
Ответ: 15,1 Мб

10. Цифровой аудиофайл содержит запись звука низкого качества (звук мрачный и приглушенный). Какова длительность звучания файла, если его объем составляет 650 Кб? ([1], стр. 157, №93)

Решение:

Для мрачного и приглушенного звука характерны следующие параметры: частота дискретизации — 11, 025 КГц, разрядности аудиоадаптера — 8 бит (см. таблицу 1). Тогда T=A/D/I. Переведем объем в байты: 650 Кб = 665600 байт

Т=665600 байт/11025 Гц/1 байт ≈60.4 с

Ответ: длительность звучания равна 60,5 с

11. Оцените информационный объем высокачественного стереоаудиофайла длительностью звучания 1 минута, если "глубина" кодирования 16 бит, а частота дискретизации 48 кГц. ([2], стр. 74, пример 2.54)

Решение:

Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 48 000 х 2 = 1 536 000 бит = 187,5 Кбайт (умножили на 2, так как стерео).

Информационный объем звукового файла длительностью 1 минута равен:
187,5 Кбайт/с х 60 с ≈ 11 Мбайт

Ответ: 11 Мб

Ответ: а) 940 Кбайт; б) 2,8 Мбайт.

12. Рассчитайте время звучания моноаудиофайла, если при 16-битном кодировании и частоте дискретизации 32 кГц его объем равен:
а) 700 Кбайт;
б) 6300 Кбайт

([2], стр. 76, №2.84)

Решение:

а).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 32 000 = 512000 бит = 64000 байт = 62,5 Кбайт/с
2) Время звучания моноаудиофайла объемом 700 Кбайт равно:
700 Кбайт : 62,5 Кбайт/с = 11,2 с

б).
1) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 32 000 = 512000 бит = 64000 байт = 62,5 Кбайт/с
2) Время звучания моноаудиофайла объемом 700 Кбайт равно:
6300 Кбайт : 62,5 Кбайт/с = 100,8 с = 1,68 мин

Ответ: а) 10 сек; б) 1,5 мин.

13. Вычислить, сколько байт информации занимает на компакт-диске одна секунда стереозаписи (частота 44032 Гц, 16 бит на значение). Сколько занимает одна минута? Какова максимальная емкость диска (считая максимальную длительность равной 80 минутам)? ([4], стр. 34, упражнение №34)

Решение:

Формула для расчета объема памяти A=D*T*I:
(время записи в секундах) * (разрядность звуковой платы в байтах) * (частота дискретизации). 16 бит -2 байта.
1) 1с х 2 х 44032 Гц = 88064 байт (1 секунда стереозаписи на компакт-диске)
2) 60с х 2 х 44032 Гц = 5283840 байт (1 минута стереозаписи на компакт-диске)
3) 4800с х 2 х 44032 Гц = 422707200 байт=412800 Кбайт=403,125 Мбайт (80 минут)

Ответ: 88064 байт (1 секунда), 5283840 байт (1 минута), 403,125 Мбайт (80 минут)

2. Определение качества звука.

Для определения качества звука надо найти частоту дискретизации и воспользоваться таблицей №1

256 (28) уровней интенсивности сигнала -качество звучания радиотрансляции, использованием 65536 (216) уровней интенсивности сигнала - качество звучания аудио-CD. Самая качественная частота соответствует музыке, записанной на компакт-диске. Величина аналогового сигнала измеряется в этом случае 44 100 раз в секунду.

Уровень «5»

13. Определите качество звука (качество радиотрансляции, среднее качество, качество аудио-CD) если известно, что объем моноаудиофайла длительностью звучания в 10 сек. равен:
а) 940 Кбайт;
б) 157 Кбайт.

([2], стр. 76, №2.83)

Решение:

а).
1) 940 Кбайт= 962560 байт = 7700480 бит
2) 7700480 бит : 10 сек = 770048 бит/с
3) 770048 бит/с : 16 бит = 48128 Гц –частота дискретизации – близка к самой высокой 44,1 КГц
Ответ: качество аудио-CD

б).
1) 157 Кбайт= 160768 байт = 1286144 бит
2) 1286144 бит : 10 сек = 128614,4 бит/с
3) 128614,4 бит/с : 16 бит = 8038,4 Гц
Ответ: качество радиотрансляции

Ответ: а) качество CD; б) качество радиотрансляции.

14. Определите длительность звукового файла, который уместится на гибкой дискете 3,5”. Учтите, что для хранения данных на такой дискете выделяется 2847 секторов объемом 512 байт.
а) при низком качестве звука: моно, 8 бит, 8 кГц;
б) при высоком качестве звука: стерео, 16 бит, 48 кГц.

([2], стр. 77, №2.85)

Решение:

а).
1) Информационный объем дискеты равен:
2847 секторов х 512 байт = 1457664 байт = 1423,5 Кбайт
2) Информационный объем звукового файла длительностью в 1 секунду равен:
8 бит х 8 000 = 64 000 бит = 8000 байт = 7,8 Кбайт/с
3) Время звучания моноаудиофайла объемом 1423,5 Кбайт равно:
1423,5 Кбайт : 7,8 Кбайт/с = 182,5 с ≈ 3 мин

б).
1) Информационный объем дискеты равен:
2847 секторов х 512 байт = 1457664 байт = 1423,5 Кбайт
2) Информационный объем звукового файла длительностью в 1 секунду равен:
16 бит х 48 000 х 2= 1 536 000 бит = 192 000 байт = 187,5 Кбайт/с
3) Время звучания стереоаудиофайла объемом 1423,5 Кбайт равно:
1423,5 Кбайт : 187,5 Кбайт/с = 7,6 с

Ответ: а) 3 минуты; б) 7,6 секунды.

3. Двоичное кодирование звука.

При решении задач пользуется следующим теоретическим материалом:

Для того, чтобы кодировать звук, аналоговый сигнал, изображенный на рисунке,



плоскость разбивается на вертикальные и горизонтальные линии. Вертикальное разбиение –это дискретизация аналогового сигнала (частота измерения сигнала), горизонтальное разбиение - квантование по уровню. Т.е. чем мельче сетка – тем качественнее приближен аналоговый звук с помощью цифр. Восьмибитное квантование применяется для оцифровки обычной речи (телефонного разговора) и радиопередач на коротких волнах. Шестнадцатибитное – для оцифровки музыки и УКВ (ультро-коротко-волновые) радиопередач.

Уровень «3»

15. Аналоговый звуковой сигнал был дискретизирован сначала с использованием 256 уровней интенсивности сигнала (качество звучания радиотрансляции), а затем с использованием 65536 уровней интенсивности сигнала (качество звучания аудио-CD). Во сколько раз различаются информационные объемы оцифрованного звука? ([2], стр. 77, №2.86)

Решение:

Длина кода аналогового сигнала с использованием 256 уровней интенсивности сигнала равна 8 битам, с использованием 65536 уровней интенсивности сигнала равна 16 битам. Так как длина кода одного сигнала увеличилась вдвое, то информационные объемы оцифрованного звука различаются в 2 раза.

Ответ: в 2 раза.

Уровень «4»

16. Согласно теореме Найквиста—Котельникова, для того чтобы аналоговый сигнал можно было точно восстановить по его дискретному представлению (по его отсчетам), частота дискретизации должна быть как минимум вдвое больше максимальной звуковой частоты этого сигнала.

  • Какова должна быть частота дискретизации звука, воспринимаемого человеком?

  • Что должно быть больше: частота дискретизации речи или частота дискретизации звучания симфонического оркестра?

Цель: познакомить учащихся с характеристиками аппаратных и программных средств работы со звуком. Виды деятельности: привлечение знаний из курса физики (или работа со справочниками). ([3], стр. ??, задача 2)

Решение:

Считается, что диапазон частот, которые слышит человек, составляет от 20 Гц до 20 кГц. Таким образом, по теореме Найквиста—Котельникова, для того чтобы аналоговый сигнал можно было точно восстановить по его дискретному представлению (по его отсчетам), частота дискретизации должна быть как минимум вдвое больше максимальной звуковой частоты этого сигнала. Максимальная звуковая частота которую слышит человек -20 КГц, значит, аппаратура и программные средства должны обеспечивать частоту дискретизации не менее 40 кГц, а точнее 44,1 КГц. Компьютерная обработка звучания симфонического оркестра предполагает более высокую частоту дискретизации, чем обработка речи, поскольку диапазон частот в случае симфонического оркестра значительно больше.

Ответ: не меньше 40 кГц, частота дискретизации симфонического оркестра больше.

Уровень»5»

17. На рисунке изображено зафиксированное самописцем звучание 1 секунды речи. Закодируйте его в двоичном цифровом коде с частотой 10 Гц и длиной кода 3 бита. ([3], стр. ??, задача 1)

Решение:

Кодирование с частотой 10 Гц означает, что мы должны измерить высоту звука 10 раз за секунду. Выберем равноотстоящие моменты времени:

Длина кода в 3 бита означает 23 = 8 уровней квантования. То есть в качестве числового кода высоты звука в каждый выбранный момент времени мы можем задать одну из следующих комбинаций: 000, 001, 010, 011, 100, 101, 110, 111. Их всего 8, следовательно, высоту звука можно измерять на 8 «уровнях»:

«Округлять» значения высоты звука будем до ближайшего нижнего уровня:

Используя данный способ кодирования, мы получим следующий результат (пробелы поставлены для удобства восприятия): 100 100 000 011 111 010 011 100 010 110.

Примечание. Целесообразно обратить внимание учащихся на то, насколько неточно код передает изменение амплитуды. То есть частота дискретизации 10 Гц и уровень квантования 23 (3 бита) слишком малы. Обычно для звука (голоса) выбирают частоту дискретизации 8 кГц, т. е. 8000 раз в секунду, и уровень квантования 28 (код длиной 8 бит).

Ответ: 100 100 000 011 111 010 011 100 010 110.

18. Объясните, почему уровень квантования относится, наряду с частотой дискретизации, к основным характеристикам представления звука в компьютере. Цели: закрепить понимание учащимися понятий «точность представления данных», «погрешность измерения», «погрешность представления»; повторить с учащимися двоичное кодирование и длину кода. Вид деятельности: работа с определениями понятий. ([3], стр. ??, задача 3)

Решение:

В геометрии, физике, технике есть понятие «точность измерения», тесно связанное с понятием «погрешность измерения». Но есть еще и понятие «точность представления». Например, про рост человека можно сказать, что он: а) около. 2 м, б) чуть больше 1,7 м, в) равен 1 м 72 см, г) равен 1 м 71 см 8 мм. То есть для обозначения измеренного роста можно использовать 1, 2, 3 или 4 цифры.
Так же и для двоичного кодирования. Если для записи высоты звука в конкретный момент времени использовать только 2 бита, то, даже если измерения были точны, передать можно только 4 уровня: низкий (00), ниже среднего (01), выше среднего (10), высокий (11). Если использовать 1 байт, то можно передать 256 уровней. Чем выше уровень квантования, или, что то же самое, чем больше битов отводится для записи измеренного значения, тем точнее передается это значение.

Примечание. Следует отметить, что измерительный инструмент тоже должен поддерживать выбранный уровень квантования (длину, измеренную линейкой с дециметровыми делениями, нет смысла представлять с точностью до миллиметра).

Ответ: чем выше уровень квантования тем точнее передается звук.

Литература:

[1] Информатика. Задачник-практикум в 2 т. /Под ред. И.Г. Семакина, Е.К. Хеннера: Том 1. – Лаборатория Базовых Знаний, 1999 г. – 304 с.: ил.

[2] Практикум по информатике и информационным технологиям. Учебное пособие для общеобразовательных учреждений / Н.Д. Угринович, Л.Л. Босова, Н.И. Михайлова. – М.: Бином. Лаборатория Знаний, 2002. 400 с.: ил.

[3] Информатика в школе: Приложение к журналу «Информатика и образование». №4 — 2003. — М.: Образование и Информатика, 2003. — 96 с.: ил.

[4] Кушниренко А.Г., Леонов А.Г., Эпиктетов М.Г. и др. Информационная культура: одирование информации. Информационные модели. 9-10 класс: Учебник для общеобразовательных учебных заведений. — 2-е изд. — М.: Дрофа, 1996. — 208 с.: ил.

[5] Гейн А.Г., Сенокосов А.И. Справочник по информатике для школьников. — Екатеринбург: «У-Фактория», 2003. — 346. с54-56.

Школьная информатика в помощь аудиофилу. Часть 1. – hifi-audio.ru

Почему часть первая, скажете вы, может эта информация не нужна или скучна, а автор задумал уже и вторую часть. Но дело в том, что задумал автор как раз сразу именно вторую часть, и она не столько про задачи, а про довольно один любопытный вопрос,  но без первой части, во-первых, то что там будет рассмотрено, не понять, а во вторых, есть парадокс, когда люди увлекающиеся аудио вроде-бы и сами все знают, но в элементарных понятиях “плавают”.
Вот и ударим праведным молотом информации по не грамотности или “забывчивости”.
И что в этом нам поможет?
Друзья, вы не поверите вероятно, но поможет нам школьный, как я понял, курс информатики.
Школьная информатика в помощь аудиофилу – прекрасный заголовок, как мне кажется, и связь поколений, и единение.

Итак, вы знаете как посчитать размер аудио-файла, его частоту и прочие моменты?  Кто-то уверенно скажет “да”, но, я уверен, что многие скажут “знаю, но не помню”,  и что-то в этом роде. Ведь так, признаемся?
На глаза как раз попался сборник задач по информатике, Как никогда актуальный.
Давайте рассмотрим задачи из него, которые мне показались крайне позновательными и любопытными и совместно их решим, разумеется.

Задачи даны по уроку “Определение объема звукового файла”.
Постулаты:
Размер цифрового моноаудиофайла измеряется по формуле: 

A = D*T*i,

где D – частота дискретизации (Гц), T – время звучания или записи звука, i – разрядность регистра (разрешение).
Но лично мне такое наименование не нравится, сразу не понятно, что есть что, поэтому формулу я перепишу с такими обозначениями:

Р = f * t * b

, где

Р – размер файла в байтах, f – частота дискретизации (Гц), t – время звучания звука (сек), b – разрядность регистра (в байтах).
Все необходимые сведения даны, и теперь попробуем решить первую задачу.

Задача 1.

Одна минута записи цифрового аудиофайла занимает на диске 1,3 Мб, разрядность звуковой платы — 8. С какой частотой (?) дискретизации записан звук?

Вам все  понятно и вы уже решили в уме? Молодцы, мы пока порешаем.

Итак, дано:

Р (размер) = 1,3 Мб
t = одна минута или = 60 секунд
Разрядность звуковой платы — 8 бит
f  (частота дескритизации, Гц) = ?

Решение.

Для начала переведем размер аудиофайла данный в мегабайтах с байты, чтобы воспользоваться формулой, которая ведет расчеты в минимальных величинах, а именно байтах, герцах и секундах.

Как перевести мегабайты в байты?
Во первых мегабайт состояит из килобайт.
Кило-байт = кило переводится как тысяча. Но в цифровом мире килобайт = 1024 .
Итак, 1 мегабайт (Мб) = 1024 килобайт (Кб).
Но килобайт еще надо превратить в байты.
Кило, Как мы знаем, это переводится, как 1000, но в цифровом мире это 1024.
Почему?
В цифровом мире все определяется двумя значениями – 0 или 1.
0 – нет, 1  – да.
Соответствено минимальный элемент рассчета – это 1 бит ( binary digit – двоичное число). Один бит может тметь значение 0 или 1.

Соответственно используется двоичная система счисления.
Одному биту соответствует один двоичный триггер, имеющий два положения – включен (1) или выключен (0), есть напряжение (1) или нет (0).
Ладно, куда то меня понесло слищком далеко.
Короче, 1024, а не 1000, потому что 2 в 10 степени = 1024.
Именно 2, потому что используется двоичное исчесление, т.е. возможны два значения (0 или 1).
Другими словами 1 бит принимает 2 состояния. 2 бита уже могут принять 4 состояние (с нулями и единицами), 3 бита уже 8 состояний.
Почему?
3 бита.
1 бит – это два значения = 2. Сколько состояний у 3 бит?
2 * 2 * 2= 8
У 4 бит значений может быть:
2 * 2 *2 *2 =  16
и тд.

А теперь посмотрите  2*2*2 – это  2^3 (читается как два в степени 3).
2^4 – это 16
а соответственно
2^10 = 1024
Вернемся к задаче.

Первести 1,3 Мб в байты.
1 Мб = 1024 кб
1 кб = 1024 байта
Следовательно, чтобы узнать сколько байт в килобайте и в мегабайте, Умножаем на 1024, чтобы из мегабайт получить килобайты:
1,3 Мб = 1,3*1024 = 1331,2 кб
А теперь умножаем на 1024 еще раз, чтобы из килобайт получить байты, ведь в 1 кб находится 1024 байта.
1331,2 * 1024 = 1363148,8 байт
Итак,
Р (размер) = 1363148,8 байт
Теперь следующий интересный момент условия:

Разрядность звуковой платы — 8 бит

Вам следует знать, что бит мельчайшая единица измерения, и 8 бит составляют 1 байт.

1 байт = 8 бит
Следовательно,
2 байта = 16 бит (8+8)
3 байта = 24 бит (8+8+8)
4 байт = 32 бит (8+8+8+8)
и тд.

По условию нам нужно узнать частоту дескретизации файла.
Вспомним формулу:

Р (байт) = f (Гц) * t (сек) * b (байт)

Р  = f * t * b

Чтобы узнать f (частоту дескретизации), нужно f оставить с одной стороны формулы, а все остальные перенести, если нужно – в другую сторону, за знак =.
При переносе знаки меняются, + превращается в минус, а * превращается в разделить и наоборот.
Смотрите, Р и f у нас сразу итак по разные стороны от знака =

f=Р

, поэтому их мы не трогаем. А вот остальные переносим:
t умножаласть, раз она переносится через знак  =, то на нее будут делить, получается так:

f=Р/t

далее надо перенести b. На нее умножалось, значит, теперь на нее будет делится то, что уже перенесено:

f=Р/t/b

Готово.

Р (размер) = 1363148,8 байт
t= 1 минута = 60 сек
b= 1 байт.
Почему 1 байт?
Дано в условии:
Разрядность звуковой платы — 8 бит
А 8 бит – это 1 байт.
В формулу надо подставлять именно байты. если бы формула требовала биты, то мы бы не перводили биты в байты. Но формула построена так, что требует именно байты. Поэтому мы перводим данные гам в условии 8 бит в байты и получаем – 8 бит = 1 байт.

Подставляем значения:

f=Р/t/b

f = 1363148,8 байт / 60 сек / 1 = 22719,14666666667 =22719 Гц

Так как ближайшее значение дескритизации формата – это 22050 Гц, то считаем, что файл оцифрован со значением 22050 Гц.

Другие популярные значения дескретизации 44100 Гц (СД) и тд.

Задача решена. Если вы все это знали, но забыли, давайте разомнемся еще на одной задаче.

 

А некоторые аудиофилы слушают спиной, чтобы другим не повадно было

Задача 2. Объем свободной памяти на диске — 5,25 Мб, разрядность звуковой платы — 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 22,05 кГц? 

Дано:

Р = 5,25 Мб = 5,25*1024*1024=5505024 байт

b = разрядность звуковой платы — 16 бит = 16/8 = 2 байт

f = 22,05 кГц = 22,05*1000 = 22050.

Вы скажите, а почему это  для килобайт мы умножали на 1024, а килогерцы в герцы переводим  умножая на 1000? Герцы оперируют именно 1000, и никак иначе. 1кГц = 1000 Гц. 1Мгц = 1000 кГц.

Вспоминаем формулу:

Р = f * t * b

Нужно узнать время длительности файла, т.е. Т.

Смотрим, t и Р уже по разные стороны от знака =, их не трогаем.

t= Р
остальные переносим с противоположным знаком (- = +, *=/ ) :
t = Р/f/b
Считаем:
t= 5505024/22050/2=124,8 секунды

Вторая задача уже пролетела легче?

Задача 3. Две минуты записи цифрового аудиофайла занимают на диске 5,1 Мб. Частота дискретизации — 22050 Гц. Какова разрядность аудиоадаптера?    

Дано:

t = 2 минуты = 2*60 = 120 сек
Р= 5,1 мб = 5,1*1024 = 5222,4 кб = 5222,4 * 1024 =5347737,6 байт
f = 22050 Гц
Узнать разрядность аудиоадаптера b.

Формула:
Р = f * t * b

Видим, что b и Р по разные стороны от знака  = поэтому их не трогаем.
b=Р

переносим оставшиеся с заменой знаков.
b=P/f/t

b = 5347737,6/22050/120= 2 байта
Переводим байты в биты, ибо разрешение звукового адаптера измеряется в битах:

1 байт = 8 бит (это аксиома)
2 байт = 8 бит +8 бит = 16 бит

Ответ: разрядность аудиоадаптера 16 бит.

 

Задача 4.

Определите качество звука (качество радиотрансляции, среднее качество, качество аудио-CD) если известно, что объем моноаудиофайла длительностью звучания в 10 сек. равен: а) 940 Кбайт;          б) 157 Кбайт.

Задача на самом деле поставлена некорректно, потому что не уточняется, что битность звука задумана равная 16 бит. Будем это иметь в виду. Возможно подразумевается, что раз озвучили формат качества аудио-СД, имеющий параметры 44100/16 бит, то это является подсказкой.
Длительность исчисляется соотношением бит в секунду, поэтому
переводим килобайты в байты (умножаем на 1024) и далее в биты (умножаем на 8).
940 кб = 940*1024=962560 байт = 962560 * 8 = 7700480 бит
По заданию такой объем проходит за 10 секунд, узнаем сколько  бит идет за 1 секунду:
7700480 : 10 = 770048 бит/сек
Чтобы узнать формат звука, разделим еще на битность фомата СД = 16.

Формула

Р = f * t * b

f = Р/t/b

f=770048/ 1 сек/16 = 48128 Гц.

Ответ близок к 44,1 КГц формата СД.
940 кб – трансляция ведется в качестве СД.
Другой данный вариант:
157 Кбайт = 157 * 1024 * 8 = 1286144 бит
1286144 / 10 сек = 128614,4
f = 128614,4/1/16 = 8038 Гц

Ответ 2. Трансляция 157 кб в качестве радиотрансляции.

 

Задача 5. Определите длительность звукового файла, который уместится на гибкой дискете 3,5”. Учтите, что для хранения данных на такой дискете выделяется 2847 секторов объемом 512 байт.
а) при низком качестве звука: моно, 8 бит, 8 кГц;

б) при высоком качестве звука: стерео, 16 бит, 48 кГц.

Узнаем максимальный объем дискеты умножив число секторов на объем информации способный в них хранится:

Р=2847*512 =1457664 байт
8 кГц = 8000 Гц
8 бит = 1 байт
Р = f * t * b
t = Р/f/b
t = 1457664 /8000/1= 182.2 сек

Ответ : в качестве 8 бит, 8 кГц на дискете уместится 182 секунды или 182/60 =  3 минуты времени аудио.

б).16 бит, 48 кГц.

16 бит = 2 байта
48 кГц = 48000 Гц
t = Р/f/b
t=1457664 /48000/2=15 секунд

Ответ: в качестве 16 бит, 48 кГц на дискете уместится 15 секунд.

Задача 6.

Определить объем памяти для хранения цифрового аудиофайла, время звучания которого составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 бит.

Р=?

t=2 минуты = 120 сек
f = 44.1кГц =44100 Гц
b=16 bit = 2 байт
Р = f * t * b

Р=44100*120*2=10584000 байт = 10584000 байт /1024 =  10335,9 кБ= 10335,9 / 1024 = 10 Мб

Задача 7.  

Объем свободной памяти на диске — 0,01 Гб, разрядность звуковой платы — 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 44100 Гц?

Р=0,01 Гб = 0,01*1024=10,24 Мб = 10,24*1024=10485,76 кб = 10485,76*1024=10737418,24 байт

b= 16 bit = 2 байт (8+8)

f=44100 Гц
t = ?
Р = f * t * b
t = Р/f/b
t = 10737418,24  / 44100/2=121 сек

На этом я думаю стоит завершить небольшую экскурсию в школьную программу по информатике с 6 по 10 класс.

Решение задач на кодирование звуковой информации. | Методическая разработка по информатике и икт (10 класс) на тему:

Решение задач на кодирование звуковой информации.

  1. Теоретическая часть

При решении задач учащиеся опираются на следующие понятия:

 Временная дискретизация – процесс, при котором, во время кодирования непрерывного звукового сигнала, звуковая волна разбивается на отдельные маленькие временные участки, причем для каждого такого участка устанавливается определенная величина амплитуды. Чем больше амплитуда сигнала, тем громче звук.

Глубина звука (глубина кодирования) - количество бит на кодировку звука.

Количество различных уровней громкости рассчитываем по формуле N= 2I , где I – глубина звука.

Частота дискретизации – количество измерений уровня входного сигнала в единицу времени (за 1 сек). Чем больше частота дискретизации, тем точнее процедура двоичного кодирования. Частота измеряется в герцах (Гц).

 Качество двоичного кодирования – величина, которая определяется глубиной кодирования и частотой дискретизации.

Разрядность регистра - число бит в регистре аудио адаптера. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического тока в число и обратно. Если разрядность равна I, то при измерении входного сигнала может быть получено 2I =N различных значений.

  1. Практическая часть. Разбор и решение задачи.

Задача 1. Оцените информационный объём цифрового звукового стерео файла длительностью 20 секунд при глубине кодирования 16 бит и частоте дискретизации 10000 Гц?  Результат представить в Кбайтах, округлить до сотых.

         При решении таких задач надо не забывать следующее:

Что  моно - 1 канал, стерео - 2 канала

Дано:

I = 16 бит

t = 20 сек

η =10000 Гц

I - разрядность звуковой карты,

t - время звучания аудиофайла,

η - частота дискретизации

Решение:

V =2· I · η ·t

V = 2* 16 * 10000*20 = 6400000 бит

6400000/8 = 800000 байт

800000/1024 = 781,25 Кбайт

Ответ:V(Инфор.) = 781,25 Кбайт

Найти: V(информационный объём)-?

Задача 2. Определить размер (в байтах) цифрового аудиофайла, время звучания которого составляет 10 секунд при частоте дискретизации 22,05 кГц и разрешении 8 бит.

 Дано:

I = 8 бит=1 байт

t = 10 сек

η = 22,05 кГц = 22,05 * 1000 Гц = 22050 Гц

I - разрядность звуковой карты,

t - время звучания аудиофайла,

η - частота дискретизации

Решение:

V(Инфор.) =  I · η ·t

V(Инфор.) =  22050 *10 *1 = 220500 байт

Ответ: V(Инфор.) = 220500 байт

Найти: V(информационный объём)-?

Задача 3. Объем свободной памяти на диске — 5,25 Мб, разрядность звуковой платы — 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 22,05 кГц?

Дано:

I = 16 бит = 2 байт

V(Инфор.) = 5,25Мб = 5505024 байт

η = 22,05 кГц =22,05 * 1000 Гц =22050 Гц

Решение:

V(Инфор.) =  I · η ·t

t = V(Инфор.)/( η · I)

t = 5505024/( 22050 *2 = 124,8 сек

Ответ: t = 124,8 секунды

Найти: t-?

аудио - как определить продолжительность файла .mid в Python?

Переполнение стека
  1. Около
  2. Товары
  3. Для команд
  1. Переполнение стека Общественные вопросы и ответы
  2. Переполнение стека для команд Где разработчики и технологи делятся частными знаниями с коллегами
.

FFMPEG windows 10, как найти команду длительности мультимедийного файла

Переполнение стека
  1. Около
  2. Товары
  3. Для команд
  1. Переполнение стека Общественные вопросы и ответы
  2. Переполнение стека для команд Где разработчики и технологи делятся частными знаниями с коллегами
  3. Вакансии Программирование и связанные с ним технические возможности карьерного роста
.

Как узнать длительность видеофайла из http ответа

Переполнение стека
  1. Около
  2. Товары
  3. Для команд
  1. Переполнение стека Общественные вопросы и ответы
  2. Переполнение стека для команд Где разработчики и технологи делятся частными знаниями с коллегами
  3. Вакансии Программирование и связанные с ним технические возможности карьерного роста
.

.net - как получить продолжительность аудиофайла после загрузки с помощью FFMPEG

Переполнение стека
  1. Около
  2. Товары
  3. Для команд
  1. Переполнение стека Общественные вопросы и ответы
  2. Переполнение стека для команд Где разработчики и технологи делятся частными знаниями с коллегами
  3. Вакансии Программирование и связанные с ним технические возможности карьерного роста
  4. Талант Нанимайте технических специалистов и создавайте свой бренд работодателя
.

Как найти продолжительность разницы между двумя датами в java?

Переполнение стека
  1. Около
  2. Товары
  3. Для команд
  1. Переполнение стека Общественные вопросы и ответы
  2. Переполнение стека для команд Где разработчики и технологи делятся частными знаниями с коллегами
  3. Вакансии Программирование и связанные с ним технические возможности карьерного роста
  4. Талант
.

python - Как получить продолжительность видео с помощью cv2

Переполнение стека
  1. Около
  2. Товары
  3. Для команд
  1. Переполнение стека Общественные вопросы и ответы
  2. Переполнение стека для команд Где разработчики и технологи делятся частными знаниями с cowo
.

Смотрите также